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What are Types good for

Purpose

Predict/document program behavior: Function expects an integer and
yields a Boolean value. Tells us which operations are valid.

Detect illegal behavior: Add Integer and Booleans.

Optimization: Boolean values require 1 Byte storage whereas Integer
values require at least 2 Bytes.

...

Approach

Static (compile-time) versus dynamic (run-time) type checking.
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What are Types?

Type Language

t ::= Int | Bool | t → t

Example of a higher-order functional type language.

Static versus Dynamic

Most PLs check types at compile-time.

There are type-preserving compilers where the final assembler code is
strongly typed.

Some PLs only check types at run-time.

Some (scripting) PLs don’t care about types at all.
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Typing “Rules”

Informal Conditions

Types of Operands must be compatible.

if and while must have Boolean conditions.

...

Issue

Good for documentation but too informal.

Details are missed.

Ambiguities.

...
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More Formally

Type Systems

Formal notation to assign types to programs via a set of typing rules.

Huge design space (static versus dynamic, strong versus weak,
monorphic versus polymorphic, ...)

We consider specific case:

Static typing.
Describes the static semantics of program (without actually executing
the program).
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Type Judgments + Rules

Typing Judgment

G |- p : t

Binding of free variables G = { x1 : t1, ..., xn : tn }

p a program

t it’s type

Typing Rules

G |- e1 : Int G |- e2 : Int PREMISE

-------------------------------

G |- e1 + e2 : Int CONCLUSION

The conclusion follows if we can establish the premise.
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Type Checking versus Inference

Full Type Annotations/Checking

In Java, C++ the types of variables and functions must be declared before
being used.

Some Type Inference

In Go, C++14 the types of local (automatic) variables can be inferred.

// Go example

var y int;

y = 1;

x := y + 3;
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Type Checking versus Inference (2)

Full Type Inference

In OCaml, Haskell full type inference. What’s the type of the following
functions?

let succ x = x + 1;;

let apply f x = f x;;

let inc x = apply succ x;;

Martin Sulzmann Semantic Analysis – Type Checking 8 / 13



Expressive Types

Objective

Accept more programs thanks to expressive/rich types.

Example: Polymorphism

Subtyping (aka subtype polymorphism)

Generics (aka parametric polymorphism)
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Types for Program Analysis

Objective

Make use of types to (possibly) reject more (illegal) programs.

Example: Types and Effects

Refine types with effects.

Effects track “things” that may happen during evaluation.
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Example: Type Inference in Haskell/OCaml

Consider

let apply f x = f x;;

From the program text we derive the following type equations.

t_f = t1 -> t2

t_x = t1

Hence, we can conclude

apply :: (t1 -> t2) -> t1 -> t2

where type parameters t1 and t2 are generic.
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Example: Type Inference in Haskell/OCaml

Consider

let succ x = x + 1;;

let apply f x = f x;;

let inc x = apply succ x;;

Via type inference (by generating type equations) we can infer that the
generic function apply is used in the type context
(Int -> Int) -> Int -> Int.
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Example: Dimension types for C

Consider the following fragment of a C program.

int plus(int, int);

void test() {

int x = 1; // in feet

int y = 2; // in meters

int z = plus(1,2); // physical dimensions do not match !!!

}

Solution: Dimension types. Refine types with dimensions.

int<D> plus(int<D>, int<D>);

Guarantees that the arguments to plus must have matching dimensions!
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