
Semantic Analysis – Type Checking

Martin Sulzmann

Martin Sulzmann Semantic Analysis – Type Checking 1 / 13

What are Types good for

Purpose

Predict/document program behavior: Function expects an integer and
yields a Boolean value. Tells us which operations are valid.

Detect illegal behavior: Add Integer and Booleans.

Optimization: Boolean values require 1 Byte storage whereas Integer
values require at least 2 Bytes.

...

Approach

Static (compile-time) versus dynamic (run-time) type checking.

Martin Sulzmann Semantic Analysis – Type Checking 2 / 13

What are Types?

Type Language

t ::= Int | Bool | t → t

Example of a higher-order functional type language.

Static versus Dynamic

Most PLs check types at compile-time.

There are type-preserving compilers where the final assembler code is
strongly typed.

Some PLs only check types at run-time.

Some (scripting) PLs don’t care about types at all.

Martin Sulzmann Semantic Analysis – Type Checking 3 / 13

Typing “Rules”

Informal Conditions

Types of Operands must be compatible.

if and while must have Boolean conditions.

...

Issue

Good for documentation but too informal.

Details are missed.

Ambiguities.

...

Martin Sulzmann Semantic Analysis – Type Checking 4 / 13

More Formally

Type Systems

Formal notation to assign types to programs via a set of typing rules.

Huge design space (static versus dynamic, strong versus weak,
monorphic versus polymorphic, ...)

We consider specific case:

Static typing.
Describes the static semantics of program (without actually executing
the program).

Martin Sulzmann Semantic Analysis – Type Checking 5 / 13

Type Judgments + Rules

Typing Judgment

G |- p : t

Binding of free variables G = { x1 : t1, ..., xn : tn }

p a program

t it’s type

Typing Rules

G |- e1 : Int G |- e2 : Int PREMISE

G |- e1 + e2 : Int CONCLUSION

The conclusion follows if we can establish the premise.

Martin Sulzmann Semantic Analysis – Type Checking 6 / 13

Type Checking versus Inference

Full Type Annotations/Checking

In Java, C++ the types of variables and functions must be declared before
being used.

Some Type Inference

In Go, C++14 the types of local (automatic) variables can be inferred.

// Go example

var y int;

y = 1;

x := y + 3;

Martin Sulzmann Semantic Analysis – Type Checking 7 / 13

Type Checking versus Inference (2)

Full Type Inference

In OCaml, Haskell full type inference. What’s the type of the following
functions?

let succ x = x + 1;;

let apply f x = f x;;

let inc x = apply succ x;;

Martin Sulzmann Semantic Analysis – Type Checking 8 / 13

Expressive Types

Objective

Accept more programs thanks to expressive/rich types.

Example: Polymorphism

Subtyping (aka subtype polymorphism)

Generics (aka parametric polymorphism)

Martin Sulzmann Semantic Analysis – Type Checking 9 / 13

Types for Program Analysis

Objective

Make use of types to (possibly) reject more (illegal) programs.

Example: Types and Effects

Refine types with effects.

Effects track “things” that may happen during evaluation.

Martin Sulzmann Semantic Analysis – Type Checking 10 / 13

Example: Type Inference in Haskell/OCaml

Consider

let apply f x = f x;;

From the program text we derive the following type equations.

t_f = t1 -> t2

t_x = t1

Hence, we can conclude

apply :: (t1 -> t2) -> t1 -> t2

where type parameters t1 and t2 are generic.

Martin Sulzmann Semantic Analysis – Type Checking 11 / 13

Example: Type Inference in Haskell/OCaml

Consider

let succ x = x + 1;;

let apply f x = f x;;

let inc x = apply succ x;;

Via type inference (by generating type equations) we can infer that the
generic function apply is used in the type context
(Int -> Int) -> Int -> Int.

Martin Sulzmann Semantic Analysis – Type Checking 12 / 13

Example: Dimension types for C

Consider the following fragment of a C program.

int plus(int, int);

void test() {

int x = 1; // in feet

int y = 2; // in meters

int z = plus(1,2); // physical dimensions do not match !!!

}

Solution: Dimension types. Refine types with dimensions.

int<D> plus(int<D>, int<D>);

Guarantees that the arguments to plus must have matching dimensions!

Martin Sulzmann Semantic Analysis – Type Checking 13 / 13

