Semantic Analysis — Type Checking

Martin Sulzmann

Martin Sulzmann Semantic Analysis — Type Checking 1/13

What are Types good for

@ Predict/document program behavior: Function expects an integer and
yields a Boolean value. Tells us which operations are valid.

@ Detect illegal behavior: Add Integer and Booleans.

@ Optimization: Boolean values require 1 Byte storage whereas Integer
values require at least 2 Bytes.

Approach
Static (compile-time) versus dynamic (run-time) type checking.

Martin Sulzmann Semantic Analysis — Type Checking 2/13

What are Types?

Type Language

t == Int|Bool|t—t
Example of a higher-order functional type language.

Static versus Dynamic

@ Most PLs check types at compile-time.

® There are type-preserving compilers where the final assembler code is
strongly typed.
@ Some PLs only check types at run-time.

@ Some (scripting) PLs don't care about types at all.

Martin Sulzmann Semantic Analysis — Type Checking 3/13

Typing “Rules”

Informal Conditions

@ Types of Operands must be compatible.
@ if and while must have Boolean conditions.

o ...

v
Issue

@ Good for documentation but too informal.

@ Details are missed.

@ Ambiguities.

o ...

Martin Sulzmann Semantic Analysis — Type Checking 4/13

More Formally

Type Systems

@ Formal notation to assign types to programs via a set of typing rules.

@ Huge design space (static versus dynamic, strong versus weak,
monorphic versus polymorphic, ...)
@ We consider specific case:
o Static typing.
o Describes the static semantics of program (without actually executing
the program).

Martin Sulzmann Semantic Analysis — Type Checking 5/13

Type Judgments + Rules

Typing Judgment

Gl-p: t
Binding of free variables G = { x1 : t1, ..., xn : tn }
P a program
t it’s type
Typing Rules
G |- el : Int G |- e2 : Int PREMISE
G |- el + e2 : Int CONCLUSION

The conclusion follows if we can establish the premise.

Martin Sulzmann Semantic Analysis — Type Checking 6 /13

Type Checking versus Inference

Full Type Annotations/Checking
In Java, C++ the types of variables and functions must be declared before
being used.

| A\

Some Type Inference
In Go, C++14 the types of local (automatic) variables can be inferred.

// Go example
var y int;
y=1;

X =y + 3;

Martin Sulzmann Semantic Analysis — Type Checking 7/13

Type Checking versus Inference (2)

Full Type Inference
In OCaml, Haskell full type inference. What's the type of the following

functions?

let succ x = x + 1;;
let apply f x = f x;;

let inc x = apply succ X;;

Martin Sulzmann Semantic Analysis — Type Checking 8 /13

Expressive Types

Objective
Accept more programs thanks to expressive/rich types.

Example: Polymorphism

@ Subtyping (aka subtype polymorphism)
@ Generics (aka parametric polymorphism)

Martin Sulzmann Semantic Analysis — Type Checking 9/13

Types for Program Analysis

Objective
Make use of types to (possibly) reject more (illegal) programs.

Example: Types and Effects

@ Refine types with effects.
o Effects track “things” that may happen during evaluation.

Martin Sulzmann Semantic Analysis — Type Checking 10 /13

Example: Type Inference in Haskell /OCaml

Consider

let apply f x = f x;;

From the program text we derive the following type equations.

t_f = t1 > t2
t_x = t1

Hence, we can conclude

apply :: (t1 -> t2) -> t1 -> t2

where type parameters t1 and t2 are generic.

Martin Sulzmann Semantic Analysis — Type Checking 11 /13

Example: Type Inference in Haskell /OCaml

Consider
let succ x = x + 1;;
let apply £ x = £ x;;
let inc x = apply succ Xx;;
Via type inference (by generating type equations) we can infer that the

generic function apply is used in the type context
(Int -> Int) -> Int -> Int.

Martin Sulzmann Semantic Analysis — Type Checking 12 /13

Example: Dimension types for C

Consider the following fragment of a C program.
int plus(int, int);

void test() {

int x = 1; // in feet
int y = 2; // in meters
int z = plus(1,2); // physical dimensions do not match

}
Solution: Dimension types. Refine types with dimensions.
int<D> plus(int<D>, int<D>);

Guarantees that the arguments to plus must have matching dimensions!

Martin Sulzmann Semantic Analysis — Type Checking 13 /13

