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Algorithm Basics Literature

Literature

No specific book.

Standard: Introduction to Algorithm. MIT Press. T. Cormen, C. Leiserson,
R. Rivest, and C. Stein.

References at the end of slides.
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Algorithm Basics Algorithm

Algorithm
Definition

Definition (Algorithm)

An algorithm is a well formed computable process producing one ore more output
values for one ore more input values.

”‘Wenn CD nicht Teiler von AB ist, subtrahiert man, von den beiden
Zahlen AB und CD ausgehend, immer die kleinere von der größeren bis die
entstandene Zahl Teiler der ihr vorhergehenden ist”’[Euklid: Die Elemente,
Buch VII.2]
If CD is not a divisor of AB, subtract, beginning from AB and CD, the
smaller from the greater number until the result is a divisor of the former
one.

Example (Euclid’s Algorithm)

Input: Two integers a und b
Ouput: Greatest common divisor of a und b
While a and b are not equal, subtract the smaller number from the greater.
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Algorithm Basics Algorithm

Algorithm
Pseudocode

Our given algorithm is not precise and therefore not well formed or computable.
Euclid’s version is more precise.

Value range of input numbers a and b? Negative? Zero allowed?

Computable steps are not formulated precise enough.

What is the produced output?

We us pseudocode for a precise formulation of algorithms.

Pure mathematical representation possible, but not readable for humans
anymore.

Listing 1: Euklid’s Algorithm
1 ggt = E u k l i d ( a , b )
2 i npu t : a, b ∈ N
3 output : g r e a t e s t common d i v i s o r ggt o f a and b
4 wh i l e a 6= b
5 i f a > b
6 a ← ( a − b )
7 e l s e
8 b ← ( b − a )
9 ggt ← a
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Algorithm Basics Algorithm

Algorithm
Pseudo Code

Procedural

Blocks build by indentation (shorter programs)

Basis data types from math like N,Z,Q,R, . . .. Often omitted.

Input parameters given in parenthesis after function name.

Output variable(s) declared before = in the function declaration

Usual control statements like if-else, while, for, do-while

(Multiple) Assignment ←
For loop: the lower and upper bound value u of the loop variable i is given.
After the loop i still exists. Its value after the loop is u + 1!

for i = 1 to 10 ...

End line comments \\ a comment

Prof. Dr. Christian Pape Algorithms and Data Structures 9 / 128



Algorithm Basics Algorithm

Algorithm
Pseudo Code

Listing 2: Minimum Search

1 min = minimum−s e a r c h ( a )
2 i npu t : a r r a y a 〈a0, a1, . . . , an−1〉 w i t h n ≥ 1
3 output : min{a0, . . . , an−1}
4 min ← a [ 0 ]
5 i ← 1
6 wh i l e i < a . l e n g t h
7 i f a [ i ] < min
8 min ← a [ i ]
9 i ← i + 1

Listing 3: Minimum Search with for

1 min = minimum−s e a r c h 2 ( a )
2 min ← a [ 0 ]
3 f o r i ← 1 to a . l e n g t h
4 i f a [ i ] < min
5 min ← a [ i ]
6 // i i s a . l e n g t h + 1 a t t h i s l i n e
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Algorithm Basics Algorithm

Algorithm
Problem

Definition (Problem)

A problem is a well defined description of the expected output for a defined input.

Example (Greatest Common Divisor)

Input: a, b ∈ N
Output: Greatest common divisor a und b

Definition (Instance)

An instance of a problem is one example of the input (and sometimes expected
output) described by the problem.

Example (Greatest Common Divisor)

a = 9, b = 15 is an instance of the above problem
a = −5, b = 11 not
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Algorithm Basics Algorithm

Algorithm
Correctness

Definition (Correctness)

An algorithm is correct for a given problem, if it terminates for each instance of
the problem and produces the defined output for the instance.
A correct algorithm solves the problems.

Definition taken from [3]. Sometimes termination is not part of the correctness
definition: partial correctness. If it terminates: total correctness.

Example

Euklid(a,b) is correct

Proof necessary.

Correctness can not be proven with tests!

Non trivial problems have a infinite number of instances.

Proofs are not part of this lecture. You have to trust me.
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Algorithm Basics Algorithm Analysis

Time Complexity

Pseudo code can not be execute.

Execution time can not be measured but estimated

Goal: Find the best algorithm for a problem

Estimation of number of steps (basic statements) an algorithms executes.

We are interested on problem instances where the algorithm performs very
well (base case), is very slow (worst case).

Additional: average performance

Problem: Infinite number of problem instances exists.

Solution: Estimate performance for instances with a given input complexity.

Complexity n is defined for a problem not for an algorithm.

n usually is given. If the instance is large or complex, n should be large, and
vice versa.

Other resources like used memory space can be estimated in the same
manner.
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Algorithm Basics Algorithm Analysis

Time Complexity
Example Best Case

Input complexity of greatest common divisor n := max{a, b}
Best case is a = b = n because loop terminates immediately.

We have to ”execute” the algorithms for all inputs of length n and count
basic statements. Here: Each executed operator.

Listing 4: Euklid’s Algo-
rithm

1 ggt = E u k l i d ( a , b )
2 wh i l e a 6= b
3 i f a > b
4 a ← ( a − b )
5 e l s e
6 b ← ( b − a )
7 ggt ← a

Operator Frequency
a 6= b 1
a > b
a − b

a ← . . .
b − a

b ← . . .
ggt ← a 1

Result is given as a function in n: Tbc(n) = 2
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Algorithm Basics Algorithm Analysis

Time Complexity
Example Worst Case

Worst case is a = n, b = 1 because a is decreasing very slowly.

Listing 5: Euklid’s Algo-
rithm

1 ggt = E u k l i d ( a , b )
2 wh i l e a 6= b
3 i f a > b
4 a ← ( a − b )
5 e l s e
6 b ← ( b − a )
7 ggt ← a

Operator Frequency
a 6= b n
a > b n − 1
a − b n − 1

a ← . . . n − 1
b − a

b ← . . .
ggt ← a 1

Result: Twc(n) = 4n − 2
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Algorithm Basics Algorithm Analysis

Time Complexity
Simplification

Estimation is inaccurate therefore the constant factors like 4 or 2 in 4n − 2
are mostly irrelevant.

In practice every program can be accelerated by a constant by better
hardware or compiler.

We tolerate inaccuracies in the magnitued of a constant factor.

Worst case of example is Twc(n) = c1 · n + c2 for constants c1, c2 ∈ Z.

Time complexity in example is linear in n.

Only dominant factor of result is important.

We give and compare the results of algorithms within the Big O notation.

Twc(n) = O(c1 · n + c2) = O(n)

As a consequence we only need to count the statements which are execute
most, e.g. loop condition a 6= b because the if-else only executes a constant
number of operations.
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Algorithm Basics Algorithm Analysis

Big O Notation
Definition

f and g are function from N onto R
Notation Definition Intuition Analogy

f ∈ O(g) ∃c > 0,∃n0 ∈ N f grows no ”f ≤ g”
f (n) = O(g(n)) ∀n ≥ n0 : f (n) ≤ c |g(n)| faster than g
f ∈ Θ(g) f ∈ O(g) und f ∈ Ω(g) f grows ”f = g”

equally to g
f ∈ Ω(g) g ∈ O(f ) (Knuth) f faster ”f ≥ g”

then g

O and Ω also includes equality.

We want to estimate as best as possible with Θ

Previous example hold for Θ (and therefore Ω) as well
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Algorithm Basics Algorithm Analysis

Big O Notation
Rules for Simplification

f ∈ Θ(f )

Θ(c · f (n)) = Θ(f (n))

Θ(f (n) + g(n)) = Θ(f (n) if f grows faster than g (f ∈ Ω(g))

These rules can be proven for O, Ω, and Θ by their definitions.

Functions should be simplified as much as possible with these rules.

Example

T (n) = 4n − 2 = Θ(4n − 2) = Θ(4n) = Θ(n)

T (n) = 2n+1 + n8 = Θ(2n+1 + n8) = Θ(2n+1) = Θ(2 · 2n) = Θ(2n)
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Algorithm Basics Algorithm Analysis

Big O Notation
Rules for Simplification

Example

Simplify the following functions with the Θ notation.

1 T (n) = 2n3 + 10n2 − 5

2 T (n) = (n + 7)3

3 T (n) = 1 + 2 + . . . + n − 1 + n =
∑n

i=1

4 T (n) = 2 log2 n + 4 log4 n (Use logb x = loga x
loga b

)

5 T (n) = n log2 n + 2n log2
n
2 (logarithmic rules?)

Example

Difficult: Show that log2(n!) = O(n log2 n) (Try to make n! larger so simplify with
logarithmic rules)
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Algorithm Basics Algorithm Analysis

Prime Sieve
Algorithm

Problem

Input: A natural number n > 2
Output: All prime numbers from 2 up to n

Idea: Write down all numbers from 2 to n in a (long) line (on the beach during
low tide) Start with the first prime 2 and cross out all multiplies of 2. The next
non crossed out number is a prime. Continue until n is reached (or the water
comes back).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 3 5 7 9 11 13 15 17 19 21 23 25

2 3 5 7 11 13 17 19 23 25

2 3 5 7 11 13 17 19 23

Possible Optimization: Stop when d
√

ne is reached
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Algorithm Basics Algorithm Analysis

Prime Sieve
Algorithm

Implementation with a boolean array: index specifies the number, sieve[i] =
false means i is crossed out.

Listing 6: Prime Sieve

1 prime−s i e v e ( n , s i e v e )
2 i npu t : n a t u r a l number n > 2 and r e f e r e n c e to a b o o l e a n
3 a r r a y s i e v e w i t h l e n g t h n + 1
4 output : s i e v e ( w i t h changed v a l u e s )
5 such t h a t sieve[p] = true i f f p i s a pr ime f o r a l l p ≤ 2
6 f o r i ← 0 to s i e v e . l e n g t h
7 s i e v e [ i ] = t r u e
8 f o r p ← 2 to n
9 i f s i e v e [ p ] = t r u e

10 f o r i ← 2 ∗ p to n s t e p p
11 s i e v e [ p ] ← f a l s e
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Algorithm Basics Algorithm Analysis

Prime Sieve
Algorithm

1 Execute the algorithm for n = 25 (on paper). Write down the resulting array
after each inner for loop.

2 Best, worst, and average case are the same, since there is only one instance
of the problem for a given n.

3 Give a good estimation of T (n). You only need to count the number of
executions of the inner if statement. Do not try giving a closed expression.
Use something like a + b + . . . + z .

4 Easy: Show T (n) = O(n2)

5 Harder: Show T (n) = O(n log n) (natural logarithm, try something with the
harmonic series).

6 Very hard (don’t try it): T (n) = Θ(n log log n) (a result from number theory
is needed).
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Selecting and Sorting Selection

Definition

Problem (Selection Problem, k-smallest Element)

Input: A sequence a of n values, 1 ≤ k ≤ n.
Output: Value x ∈ a that is larger than exactly k − 1 other values of a.

A total ordering ≤ on the values of a is necessary, like ≤ for numbers.
Consequence of definition: x is the k-th value in the sorted sequence of a

Example

a = {9, 6, 4, 1, 8, 2, 5, 6, 4, 3}, k = 5
4 is the 5th-smallest element of a
1, 2, 3, 4, 4, 5, 6, 6, 8, 9

Important special cases:

k = 1: Minimum

k = n: Maximum

k = b n2c: Median
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Selecting and Sorting Selection

Applications

Example (Statistics)

Given are all house hold incomes from a country.
House holds belong to the upper class if their income is larger than 60% of the
median income.

Example (Tournaments)

Given are n soccer teams. Which ones are the top three.
Total ordering is a problem: How and how often have teams to play against each
others. Assume there is tournaments modus that results in a total ordering.
Top three teams are n − 2, n − 1, and n-smallest teams with respect to this
ordering.
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Selecting and Sorting Selection

Naive Algorithm

Find the minimum of the sequence.

If k = 1 we are done.

If not: remove the minimum. And try again with k − 1 (recusive or loop)

Removing in an array to complex: swap minimum to the front and continue
with rest of array.

Listing 7: Naive Selection

1 e l e m e n t = s e l e c t i o n−n a i v e ( a , k )
2 f o r i ← 0 to k−1
3 j ← i
4 f o r l ← i + 1 to n
5 i f a [ l ] < a [ j ]
6 j ← l
7 a [ i ] , a [ j ] ← a [ j ] , a [ i ]
8 e l e m e n t ← a [ k − 1 ]

Problem complexity is n

Best case is k = 1: Θ(n)

Worst case is k = n:
1 + 2 + 3 + . . . + (n − 1) =
n(n−1)

2 = Θ(n2)

Average case: Θ(n2)
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Selecting and Sorting Selection

Better Algorithm

Try a divide and conquer approach.

Find a pre-processing such that afterwards for some p ∈ a (pivot) the
following condition (invariant) holds.

a
0 n-1

< p > p

pl
p p p

pr

Known as three-way-partitioning.

Afterwards only three cases exist:
1 pl ≤ k − 1 ≤ pr : p is the k-smallest element.
2 k − 1 < pl : k-smallest element is in the left hand part
3 k − 1 > pr : k-smallest element is in the right hand part
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Selecting and Sorting Selection

Better Algorithm

In case 2 and 3 the algorithm has to be called on smaller parts of a.

Pre-processing must be correct for a[lo..hi ] with 0 ≤ lo ≤ hi ≤ n − 1.

Assume a function (pl , pr , p) = partitioning (a, lo , hi) that does the
desired pre-processing by reordering the values within a.

The following recursive algorithm then solves our problem.

Listing 8: Selection

1 e l e m e n t = s e l e c t ( a , k , h i , l o )
2 pl , pr , p ← p a r t i t i o n i n g ( a , lo , h i )
3 i f p l ≤ k − 1 and k − 1 ≤ pr
4 e l e m e n t ← p
5 e l s e i f k − 1 < p l
6 e l e m e n t ← s e l e c t ( a , k , lo , p l − 1)
7 e l s e
8 e l e m e n t ← s e l e c t ( a , k , pr + 1 , h i )
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Selecting and Sorting Selection

Better Algorithm

Three way partitioning from Edsgar W.
Dijkstra [4]

Extend a[lo..j-1] by a[j]

Three cases exists

lo hi

< p > p= p

pl pr

j

Listing 9: Three way partitioning

1 ( p l , pr , p ) = p a r t i t i o n i n g ( a , lo , h i )
2 p , p l , p r ← a [ l o ] , lo , l o
3 f o r j ← l o + 1 to h i
4 i f a [ j ] = p
5 a [ j ] , a [ pr +1] ← a [ pr +1] , p
6 pr ← pr + 1
7 e l s e i f a [ j ] < p
8 a [ p l ] , a [ j ] , a [ pr +1] ← a [ j ] , a [ pr +1] , p
9 pl , pr ← p l + 1 , pr + 1

jpl

p p
pr+1

p

jpl

p p
pr

p 1.

2.

pr
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Selecting and Sorting Selection

Better Algorithm
Example

Example

a = 〈4, 8, 5, 2, 4, 1, 3〉
Execute partitioning(a, 0, 6)

Example

a = 〈4, 8, 5, 2, 4, 1, 3〉
Execute select(a, 6, 0, 6).
After each call of partitioning write down the resulting a.
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Selecting and Sorting Selection

Better Algorithm
Analysis

Time complexity for partitioning is linear.

Best case select: a[0] is the k-smallest element, linear time as well

Worst case: recursive call into a ”half” with n-1 elements. This is the case
when k = n and a is sorted. n + (n − 1) + . . . + 2 + 1 = Θ(n2)

Average case is Θ(n) but analysis is difficult.

Algorithm can be further improved with better selection of p: Worst case
Θ(n). Median-of-median algorithm.

No algorithm can perform better then Θ(n) in the worst case to solve the
selection problem since each elements has to be inspected at least once.
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Selecting and Sorting Sorting

Definition

Problem (Sorting, in-place)

Input: Sequence a of values and a total ordering ≤ on these values.
Output: A reordering a such that a is sorted in ascending order (and still contains
the original values of the input).

Example (Sorting numbers)

a = 〈9, 6, 4, 1, 8, 2, 5, 6, 4, 3〉 with the usual ordering on natural numbers
Sorted sequence: 1, 2, 3, 4, 4, 5, 6, 6, 8, 9
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Selecting and Sorting Sorting

Selection Sort

Naive select algorithms already sorts the first k elements.

Selection sort is identical to the naive select algorithm for k = n

Complexity Θ(n2)

Listing 10: Three way partitioning

1 s e l e c t i o n−s o r t ( a )
2 f o r i ← 0 to n − 1
3 j ← i
4 f o r l ← i + 1 to n
5 i f a [ l ] < a [ j ]
6 j ← l
7 a [ i ] , a [ j ] ← a [ j ] , a [ i ]

i-10 ji
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Selecting and Sorting Sorting

Quicksort
Idea

Again we try a divide and conquer approach.

We use the existing three-way-partitioning.

Pivot element p is already at is correct
position after the partitioning.

Since all values in the left hand part are less
than p and all values in the right hand part
are larger, sorting both parts solves the
sorting problem.

We solve both parts recursively.

We terminate the recursion if there is only
one or none element to sort.

3 1 2 4 8 9 5 6 6 

Recursion

1 2 3 4 8 9 5 6 6
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Selecting and Sorting Sorting

Quicksort

Listing 11: Quicksort

1 q u i c k s o r t ( a , lo , h i )
2 i f l o < h i
3 p , q l , q r ← p a r t i t i o n i n g ( a , lo , h i )
4 q u i c k s o r t ( a , lo , q l − 1)
5 q u i c k s o r t ( a , qr + 1 , h i )

Named Quicksort because of its good practical performance.

Invented by Anthony Charles Richard Hoare [6] 1961.

He used a different, two-way-partitioning, that uses less swaps.

A improved three-way-partitioning was developed by Robert Sedgewick.

Quicksort became the sorting routine in the C program library.

Prof. Dr. Christian Pape Algorithms and Data Structures 38 / 128



Selecting and Sorting Sorting

Quicksort
Example

Example

Sort the array a = 〈4, 9, 2, 3, 6, 8, 1, 6〉 with Quicksort.
Draw the call tree for all recursive calls.
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Selecting and Sorting Sorting

Quicksort
Analysis

Worst case: a already is sorted and p is the maximum of a[lo..hi]. The ”half”
to the right is empty. We always recurse into the large left half.

T (n) = (n − 1) + (n − 2) + . . . + 1 = Θ(n2)

Best case: p always is the median of a[lo..hi]. The time complexity can be
express by the following recurrence relation

T (n) = 2 · T (
n

2
) + n

Average case (without proof):

T (n) = Θ(n · log n)
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Selecting and Sorting Sorting

Sorting
Quicksort

Guessing the solution with the help of the call tree

Each node is a call to quicksort. Recursive calls ar drawn with an arrow.

call tree time for partitioning

for each level

n

n/2+n/2 = n

n

n

n log n
log n Levels

T (n) = Θ(n log n)

The result can be proven by induction on n using the definition of Big O.
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Basic Data Structures

Data Type
Definition

Definition (Data Type)

A data type is a set of values and operations on these values.

Example

In math: Set R of real numbers.
Operations on this set are, for instance, sum +, equality = or the relational
operator <.

Example

In Java: data type int consists of all integral numbers in the range of
{−231, . . . , 231 − 1}.
There operations like binary sum +, identity == or relational operatore <.

Operations can be given or implemented as functions or methods.
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Basic Data Structures

Abstract Data Type
Definition

Definition (Abstract Data Type)

An abstract data type is a data type, with no implementation or encoding of
values and operations.

Example

R as used in school math.
This set never really was defined (its difficult).
You learned these numbers by example (inductively) and just trusted your teacher.

Specific encoding of Java int: 8-bit two-complement.

In Java, Go, or C++ abstract data types are given as interfaces or abstract
classes.

Human readable description for methods are used to completely describe the
behavior a the data type.
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Basic Data Structures

Data Structure
Definition

Definition (Data Structure)

A data structure is a data type, that allows to store and organize data.

Example

Every programming language already defines basic data types like integers or
boolean.
With objects, records, structs, or union the programmer can create new compound
data types.
In Java, Go, or C++ a string is a data structure.

Example

In math sets and n-tuple serve the same purpose.
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Basic Data Structures Stack
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Basic Data Structures Stack

Definition

Open-Clip-Art. bookstack.svg von J Alves

A stack organize values from bottom top.

A value can be pushed on top of the stack or
the top value can be removed from it.

A stack can be empty.

Example

Call stack in programming languages to organize data local to a function call.

ଏb(5)

ଏb(3)

ଏb(1) ଏb(2)

ଏb(4)

ଏb(2)

1 f i b = f i b ( n )
2 f i b ← 1
3 i f n > 2
4 f i b ← f i b ( n−2) + f i b ( n−1)
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Basic Data Structures Stack

Operations

push(s,   )
peek(s)

empty(s): Returns true if the the stack s is
empty; false otherwise.

push(s, x): Moves x on top of the stack s.

peek(s): Returns the top of the stack,
without removing it.

pop(s): Removes the top from the stack and
returns it.

No error handling is given in this example.

The four methods together with their full description represent an abstract
data type.

Java and Go support the definition of abstract data types with interfaces,
C++ with abstract classes and virtual methods.
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Basic Data Structures Stack

Implementation

The stack s consists of an array s.stack and an integer s.top.

s.stack[s.top - 1] is the top value of s. If s.top = 0 then the stack is empty.

No specific array type is given.

Listing 12: Empty

1 empty = empty ( s )
2 empty ← s . top = 0

Listing 13: Peek

1 x = peek ( s )
2 x ← s . s t a c k [ s . top − 1 ]

Listing 14: Push

1 push ( s , x )
2 s . s t a c k [ s . top ] ← x
3 s . top ← s . top + 1

Listing 15: Pop

1 x = pop ( s )
2 x ← peek ( s )
3 s . top ← s . top − 1
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Basic Data Structures Stack

Example

Example

The initial stack s is empty. s.stack should have
length 7.
Apply the following sequence of operations on s.

1 push(s, 3)

2 push(s, 5)

3 push(s, 2)

4 pop()

5 push(s, 1)

6 pop()

7 push(s, 7)

8 pop()

9 x = peek()

0

1

2

3

4

5

6

top

 stack

s

x = ??
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Basic Data Structures Queue

Definition

Definition

A queue contains a sequence of values. It allows one value to be inserted at the
end (tail) of the queue, and removal of the head element.
This behavior is known as First-In First-Out (FIFO) principle.

tail front / head

Stack: Last-In First-Out (LIFO) principle.
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Basic Data Structures Queue

Applications

Web-Server: incoming web request (from one client) has to processed in
sequenced.

Message-Queue-Systems: Sending and receiving messages while preserving
their sequential order.

Shop-System: If items are only available with limited supply, the first shopper
gets it (not the last or random).
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Basic Data Structures Queue

enqeue(q,    )

deqeue(q)q

tail head

enqueue(q, x): Inserts value x at the tail of the queue q.

dequeue(q): Removes the front element from the q and returns it.

Queues are typically implemented with lists or arrays (no pseudo code given).
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Basic Data Structures Priority Queue
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Basic Data Structures Priority Queue

Definition and Operations

A priority queue (or heap) allows to store values x with an addition priority
value x.prio.

Only the value with the smallest priority can be removed.

Some of the essential operations:

priority-enqueue(q, x): Inserts x into the priority queue q.

priority-dequeue(q): Removes and returns the value with minimum
priority from q.

priority-decrease-value(q, x, w): Reduce the priority of the value x
to w. x is an element of the queue.

Reversing the order results in a maximum heap.

Prof. Dr. Christian Pape Algorithms and Data Structures 56 / 128



Basic Data Structures Priority Queue

Applications

Example

Process management of an operating system.
The process with the highest priority is selected for execution of (a core) in the
CPU.
Process with lesser priority have to wait.

Example

The sorting algorithm heap sort is based on the idea of selection sort. But it uses
a minimum heap to retrieve the minimum efficiently.

Example

Several graph algorithms use a priority queue to store data (example later).
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Basic Data Structures Priority Queue

Binary Heap
Definition

Definition

A binary (minimum) heap is a binary tree
such that for each node in the tree, the value
or key of the node is smaller the all values in
child nodes.

Consequence: The minimum is always
stored in the root of the tree.

Restriction: We only consider heaps
where all levels except the bottom most
are complete. The bottom level must be
filled with values from the left to the
right (without gaps).

3

6 4

8 11 4 6

12 9

3 6 4 8 11 4 6 12 9

Representation with a array: all values are stored in level order.
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Basic Data Structures Priority Queue

Binary Heap

Example

The following integer values are given:

5, 3, 7, 2, 11, 9, 2, 8, 4

Give a binary minimum heap represented as a binary tree and with an array. Both
should represent the same heap.

Prof. Dr. Christian Pape Algorithms and Data Structures 59 / 128



Basic Data Structures Priority Queue

Binary Heap
Building a binary heap

Building a binary heap from n given
values.

Idea: One value itself represents a heap.
Try to merge two heaps of the same
size, the left with top value y and the
right with z with one addition value x

Two cases:
1 x = min{x , y , z}: Make x the root

results in a new heap.
2 Swap x with min{y , z}. Continue

(recursively) in the corresponding sub
tree. The result is a binary tree again.

x sinks down the heap.

12

12

7

7

16

16

x

y z

min{y,z}

Prof. Dr. Christian Pape Algorithms and Data Structures 60 / 128



Basic Data Structures Priority Queue

Binary Heap
Building a binary heap

Example

Eight heaps are given consisting of the single values 7, 5, 9, 12, 3, 7, 4, and 13.

Merge these heaps with four other values 3, 5, 3, and 12

Merge the four resulting heaps with the values 6 and 8.

Merge both heaps with 15 .

The method builds the tree bottom up in linear time (without proof).

15

6 8

3 5 3 12

7 5 9 12 13 7 4 13
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Basic Data Structures Priority Queue

Binary Heap
Building a binary heap

15

6 8

3 5 3 4

7 5 9 12 13 7 12 13

15

3 3

5 5 7 4

7 6 9 12 13 8 12 13

3

5 3

6 5 7 4

7 15 9 12 13 8 12 13
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Basic Data Structures Priority Queue

Binary Heap
Building a binary heap

This method also is applicable if the bottom level is not complete.

2

8 4

6 9 3 12

7 3 5

2

8 4

3 5 3 12

7 6 9

2

3 3

6 5 4 12

7 8 9
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Basic Data Structures Priority Queue

Binary Heap
Removing the minimum

1 Remove top element and put the last element on top (or simply swap both).
2 Let the new top element sink down.

Example: remove minimum element 2.

2

3 3

6 5 4 12

7 8 9
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Basic Data Structures Priority Queue

Binary Heap
Removing the minimum

9

3 3

6 5 4 12

7 8

3

9 3

6 5 4 12

7 8

3

5 3

6 9 4 12

7 8
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Basic Data Structures Priority Queue

Binary Heap
Insering a value

Inserting a new value x into the heap.

1 x is placed at the end of the heap. If the last level is full, it is placed on the
front of the next level.

2 x is raised to the top: Compare x with its parent node y . If x < y hold, then
swap x with y vertauschen. Repeat until x ≥ y holds or x is the new root.

3

5 3

9 6 4 12

7 8 2
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Basic Data Structures Priority Queue

Binary Heap
Insering a value

3

5 3

9 2 4 12

7 8 6

3

2 3

9 5 4 12

7 8 6

2

3 3

9 5 4 12

7 8 6
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Basic Data Structures Priority Queue

Binary Heap
Analysis

Complexity n := number of values in the heap.
Worst Case:

Let M be a set of n values, priority-queue-create(q, M): Θ(n)

Sinking and raising an element per level at most one swap operation.

priority-enqueue(q, x): Θ(log n)

priority-dequeue(q): Θ(log n)

priority-decrease-value(q, x, w), Remove x , change its priority and
insert it again: Θ(log n)

Best case: Θ(1) except priority-queue-create(q, M).
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Basic Data Structures Priority Queue

Binary Heap
Implementation

Heap is represented with an
array a[0..n − 1]

Move one level up: divide index
by 2 (only half values on the
level above)

Parent of a[i ] is a[b i−1
2 c]

Left child of a[i ] is a[2 · i + 1],
right child a[2 · i + 2]

Implement sinking and raising
with a loop.

3

6 4

8 11 4 6

12 9

3 6 4 8 11 4 6 12 9

0 1 2 3 4 5 6 7 8

0

1

3

7

(i-1):2

i j

(j-1):2

: 2

i j
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Basic Data Structures Priority Queue

Binary Heap
Implementation

Heap q contains an attribute q.n storing the number of values in the heap
and the array q.heap. We assume that the array is large enough to store all
values.

Let value a[0] sink into the heap: down-heap(q).

Raising x in the heap: up-heap(q,x).

Listing 16: Let top sink into the heap
1 down−heap ( q )
2 i ← 0
3 do
4 l e f t ← 2 ∗ i + 1
5 r i g h t ← 2 ∗ i + 2
6 minimum ← i
7 i f l e f t < q . n and q . heap [ l e f t ] < q . heap [ minimum ]
8 minimum ← l e f t
9 i f r i g h t < q . n and q . heap [ r i g h t ] < q . heap [ minimum ]

10 minimum ← r i g h t
11 i f minimum 6= i
12 swap ( q . heap [ i ] , q . heap [ minimum ] )
13 i ← minimum
14 wh i l e i < q . n − 1 and i < minimum
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Basic Data Structures Priority Queue

Binary Heap
Implementation

Listing 17: Raise element x to the top

1 up−heap ( q , x )
2 i ← q . n
3 q . heap [ i ] ← x
4 wh i l e i 6= 0 and q . heap [ ( i −1)/2] > x
5 swap ( a [ ( i −1)/2] , a [ i ] )
6 i ← ( i −1)/2

Implementing the operations of a priority queue is left as an exercise.
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Basic Data Structures Priority Queue

Binary Heap

Example

Build a binary heap bottom up from the values 15, 14, 13, 12, 11, . . . , 2.

Add 1 to the heap.

Remove top (1 again)

Use the tree representation (15 is top value, 2 is the last one)
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Search Trees Binary Search Tree
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Search Trees Binary Search Tree

Definition

Definition

A binary tree is either empty or consists of a node and a left and a right subtree.
The node can store additional data like a key and associated values.

6

9 3

42 9

A binary tree can be build with compound data types, for instance a struct (Go
example)

typedef struct Node {

key int

left, right *Node

}
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Search Trees Binary Search Tree

Definition

Definition (Binary search tree property)

For each node x of a binary search tree with key x .key the following properties
hold:

All search keys of the left subtree x .left are less than x .key and

all search keys of the right subtree x .right are larger than x .key .

8

4

2 7

11

15

13

Search 7
7 < 8

7 > 4
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Search Trees Binary Search Tree

Searching

We use the recursive structure of a binary search tree for a recursive
algorithm:

Listing 18: Searching in a binary search tree

1 y = b i n a r y−t r e e−s e a r c h ( x , key )
2 i npu t : a node x o f t h e t r e e , a s e a r c h key
3 output : node y w i t h

y . key = key or nu l l , i f no such node e x i s t s
4 i f x = n u l l or x . key = key
5 y ← x
6 e l s e i f key < x . key
7 y ← t r e e−s e a r c h ( x . l e f t , key )
8 e l s e
9 y ← t r e e−s e a r c h ( x . r i g h t , key )

8

4

2 7

11

15

13

Example

Search subsequently for 7, 3, and finally for 15 in the given example tree.
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Search Trees Binary Search Tree

Analysis

We count the number of comparisons done while searching.

Base case: the algorithm stops at the first node (root); no recursive calls.

Θ(1) comparisions

Worst case: The tree consists of n node,
each node is the left node of its parent (the
tree is a linear list)

Θ(h) = Θ(n) comparisions

8

4

2 7

11

15

13
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Search Trees Binary Search Tree

Minimum and Maximums Search

Minimum (iterative): Follow all left sub
trees from root until no left sub tree exists.
The key of resulting node is the minimum.

Minimum (recursive): The minimum of a
binary search tree is

either the key of the current node if
node.left = null
or the minimum of node.left

Analogous maximum: follow the right
subtrees.

8

4

2

3

11

159

Listing 19: Iterative minimum search

1 y = b i n a r y−t r e e−minimum ( x )
2 wh i l e x 6= n u l l and x . l e f t 6= n u l l
3 x ← x . l e f t
4 y ← x

Listing 20: Recursive minimum
search

1 y = b i n a r y−t r e e−minimum ( x )
2 i f x = n u l l or x . l e f t = n u l l
3 y ← x
4 e l s e
5 y ← b i n a r y−t r e e−minimum ( x . l e f t )

Prof. Dr. Christian Pape Algorithms and Data Structures 79 / 128



Search Trees Binary Search Tree

Inserting

Simplification: We do not allow insertion of
keys that are already in the tree.

We start searching for a node with the key,
we want to insert.

If the key is already contained in the tree,
then we stop.

If not, then the search ends at a leaf; the
new node is inserted as a new left or right
sub tree for this leave.

8

4 11

92

10

6 14

Insert 2 Insert 10
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Search Trees Binary Search Tree

Insert

We store the root node of the tree in a new data structure T with T .root.

Listing 21: Iterative Insert

1 t r e e−i n s e r t (T, z )
2 i npu t : B i n a r y s e a r c h t r e e T and a new node z
3 y ← n u l l
4 x ← T . r o o t
5 wh i l e x 6= n u l l
6 i f z . key = x . key
7 e r r o r ” d o u b l e key ”
8 y ← x
9 i f z . key < x . key

10 x ← x . l e f t
11 e l s e
12 x ← x . r i g h t
13 i f y = n u l l
14 T . r o o t ← z
15 e l s e i f z . key < y . key
16 y . l e f t ← z
17 e l s e
18 y . r i g h t ← z
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Search Trees Binary Search Tree

Insert
Analysis

Counting number of comparisons between keys.

Best case: No left sub tree exists for the
root. Right sub tree contains n − 1 node. A
node with minimum key value is inserted to
the left.

Θ(1)

Worst case: The tree degenerates to a linear
list with n node. For instance to the right.
A node with the Maximum is inserted.

n-1

n
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Search Trees Binary Search Tree

Insert
Average Case

For inserting, searching, minimum or maximum search (and deleletion as well)

Theorem

A binary search tree created from inserting randomly distributed keys has a height
of O(log2 n).

Consequence: All above operation use O(log n) comparisons in the average
case.

See Cormen et al. for a proof: Its several pages; statistics necessary; some
”magical” estimations used.
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Search Trees Binary Search Tree

Delete

Search the node that contains the key we
want to delete.

If no such node exists: do nothing.

Otherwise we have three cases:
1 Deleting a Leaf .

2 Deleting an inner node (but not the
root).

3 Deleting the root .

Problem: Resulting tree still must obey the
binary search property.
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Search Trees Binary Search Tree

Delete
Leaf

Remove leaf node: Set reference of parent to null.

We need the reference to the parent node to do that.

Binary search tree property still holds.
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Search Trees Binary Search Tree

Delete
Inner node

First case: Inner node only has one sub tree.

The reference of the parent is replaced by the reference of this sub tree.

Binary search tree property still holds.

z

> z
z

> z
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Search Trees Binary Search Tree

Delete
Inner node

Second case: Inner node has to sub trees.

Find the node with the minimum key in the right sub tree.

Replace the key of the node we want to delete with this minimum.

Delete the node with the minimum (only first case can occur)

Binary search tree property still holds.

z

m

mz < m

< z < m

> m
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Search Trees Binary Search Tree

Delete
Root

Similiar to the above cases but if the parent reference has to be change, then
T .root must be changed.

z

T.root T.root

z

T.root
T.root
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Search Trees Binary Search Tree

Delete

Example

Build a binary search tree by inserting the following keys (nodes)
7, 11, 3, 1, 5, 4, 6, 9, 14, 10, 13.
Afterwards remove the keys 1, 6, 5, 11, 7
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Search Trees Binary Search Tree

Delete
Analysis

No algorithm given (see Cormen).

Similar to search since the node to be delete has to be found beforehand.

Best case: Θ(1)
Worst case: Θ(n)
Average case: Θ(log n)
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Search Trees Red Black Tree

Definition

Definition

Ein balance red black tree is a binary search tree such that:

Every node is either red or black,

there are no two consecutive red nodes on a path in the tree,

every path from the root to a leaf contains the same number of black nodes,

and the root always is black (we still draw its background sometimes white)

20

15

10 42

40 57

35

31

23

19

8

2
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Search Trees Red Black Tree

Properties

We use red black trees for short instead of balanced red black trees.

Search of binary tree can be used for red black trees without modifications.

In the best case a red black tree contains only black nodes: tree is perfectly
balanced. Θ(log2 n) time to search a key in the worst case.

The worst case is not a red black tree with the maximum number of red
nodes, since it is still perfectly balanced.

Worst case: Only one branch contains the maximum number of red nodes.
Θ(2 log2 n) since the longest branch is two times longer than all other (short)
branches.

Problem: Inserting in Θ(log2 n) possible in all cases? Inserting a node might
violate the red black property.

We restrict the red black property a bit to make implementations easier.
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Search Trees Red Black Tree

Definition
Left Leaning Red Black Tree

Definition

A left leaning red black tree is a red black tree where a right child is only
allowed to be red if a red left child exists.

The previous tree is a left-leaning red black tree.

Rudolf Bayer, 1972: symmetric binary B-trees. [2]

Leonidas J. Guibas und Robert Sedgewick, 1976: Rot-Schwarz-Baum.

Left (right) leaning: Idea by Arne Anderson, 1993. [1]
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Search Trees Red Black Tree

Implementation

Unlike Cormen et al: No reference to parent node

One additional bit (bool) to encode the color of a node x : x .red = true iff
the node x is red.

a
b a

a b

b

a c

Hacks to encode color bit: Use the lowest significant bit of the pointer a
node, since due to memory alignment it is always zero.

”swapping pointers”: Node is red if the left child contains a key larger then
the right child. Search algorithm has to be adapted since the binary search
property does not hold anymore.
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Search Trees Red Black Tree

Insert
Idea

Recursive implementation, since we do not store the parent node.
New node is always inserted as a red node.
Recoloring and restructuring the tree after the recursion while moving
”backwards” from leaf to root.
We need to identify all cases that violate the left leaning red black property.
We develop the insertion algorithm by step wise refinement of the existing
one.
We assume that x.key is not already contained in the tree.
Parameter x is a red node with empty subtrees.

Listing 22: Insert
1 node = red−b l ack−i n s e r t ( u , x )
2 i f u = n u l l
3 node ← x
4 e l s e
5 i f x . key < u . key
6 u . l e f t ← red−b l ack−i n s e r t ( u . l e f t , x )
7 e l s e
8 u . r i g h t ← red−b l ack−i n s e r t ( u . r i g h t , x )
9 // t r e a t m e n t o f s p e c i a l c a s e s

10 node ← u
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Search Trees Red Black Tree

Insert
Second case

Node is inserted as right child: left leaning property might be violated.

We use a function red(x) := x != null and x.red

Listing 23: Insert

1 node = red−b la ck−i n s e r t ( u , x )
2 i f u = n u l l
3 node ← x
4 e l s e
5 i f x . key < u . key
6 u . l e f t ← red−b la ck−i n s e r t ( u . l e f t , x )
7 e l s e
8 u . r i g h t ← red−b la ck−i n s e r t ( u . r i g h t , x )
9 i f not r e d ( u . l e f t ) and r e d ( u . r i g h t )

10 u ← red−b l ack−r o t a t e− l e f t ( u )
11 // t r e a t m e n t o f o t h e r s p e c i a l c a s e s
12 node ← u

left leaning
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Search Trees Red Black Tree

Insert
Left Rotation

v

uv

left leaning

u
1 node = red−b l ack−r o t a t e− l e f t ( u )
2 z = u . r i g h t
3 u . r i g h t = z . l e f t
4 z . l e f t = u
5 z . r e d = u . r e d
6 u . r e d = t r u e
7 node = z

Result of rotation still holds binary search property.

Number of black nodes on a path unchanged.

New parent node is returned since its parents left or right reference has to be
updated.
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Search Trees Red Black Tree

Insert
Example

Example

Given a red black tree consisting of a single black root node with key 5.
Insert red nodes 7 and 9.
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Search Trees Red Black Tree

Insert
Eliminating two consecutive red nodes

No two consecutive red nodes can occur on a left path of u due to the prior
left rotation or inserting a red node into the left path.

Solution: Right rotation at the black parent node u.

Implementation complementary to left rotation.

u

u
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Search Trees Red Black Tree

Insert
Second Case

u

u

Listing 24: Insert
1 node = red−b l ack−i n s e r t ( u , x )
2 i f u = n u l l
3 node ← x
4 e l s e
5 i f x . key < u . key
6 u . l e f t ← red−b l ack−i n s e r t ( u . l e f t , x )
7 e l s e
8 u . r i g h t ← red−b l ack−i n s e r t ( u . r i g h t , x )
9 i f not r e d ( u . l e f t ) and r e d ( u . r i g h t )

10 u ← red−b la ck−r o t a t e− l e f t ( u )
11 i f r e d ( u . l e f t ) and r e d ( u . l e f t . l e f t )
12 u ← red−b la ck−r o t a t e−r i g h t ( u )
13 node ← u
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Search Trees Red Black Tree

Example

Example

Given a red black tree consisting of a single black root node with key 1.
Insert (red) nodes 2, 3, and 4.

Red-black property?
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Search Trees Red Black Tree

Last Case

Two consecutive red nodes appear on side path in the example.

We do not traverse this path, therefor no re-balancing is done.

We do not want to step into another path.

Solution: If a black node has a red left and right child node, we re-color
them. red nodes to black, black node to red.

Red-black property still holds (same number of black nodes on each path)

Possible: Parent of new red node could be red, but this is resolved later while
traversing up the path.
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Search Trees Red Black Tree

Insert
Last Case

Listing 25: Insert

1 node = red−b l ack−i n s e r t ( u , x )
2 i f u = n u l l
3 node ← x
4 e l s e
5 i f x . key < u . key
6 u . l e f t ← red−b l ack−i n s e r t ( u . l e f t , x )
7 e l s e
8 u . r i g h t ← red−b l ack−i n s e r t ( u . r i g h t , x )
9 i f not r e d ( u . l e f t ) and r e d ( u . r i g h t )

10 u ← red−b la ck−r o t a t e− l e f t ( u )
11 i f r e d ( u . l e f t ) and r e d ( u . l e f t . l e f t )
12 u ← red−b la ck−r o t a t e−r i g h t ( u )
13 i f r e d ( u . l e f t ) and r e d ( u . r i g h t )
14 u . red , u . l e f t . red , u . r i g h t . r e d ← t r u e , f a l s e , f a l s e
15 node ← u
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Search Trees Red Black Tree

Insert
Final version

Insertion might change the root.

We call our function on T.root.

Afterwards ensure that T.root is black by always overwriting its color (do not
forget this in your examples)

Listing 26: Final Insert

1 red−b la ck−i n s e r t (T, x )
2 T . r o o t ← red−b la ck−i n s e r t (T . root , x )
3 T . r o o t . r e d = f a l s e

Example

Given an empty red black tree T .
Insert (red) nodes 1, 2, 3, 4, 5, 6, 7, and 8.
Continue to insert 9, 10, etc. if you are faster than your class mates.
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Search Trees Red Black Tree

Delete

Similar to binary tree.

Re-balancing is the same.

Pure recursive implementation difficult.

Cormen: Iterative version with parent node. Re-balance function is called
from insert and delete function in different cases to avoid redundant code.

Java java.util.TreeSet: Implementation of a red black tree identically to the
version given in Cormen with additional boiler code.
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Graphs

Definition

Definition

A directed graph, digraph G is a pair G = (V ,E ) consisting of a finite set V of
nodes a set of pairs E ⊆ V 2 of directed edged.

Example

G = (V ,E ) with
V = {1, 2, 3, 4, 5, 6} und
E = {(1, 2), (1, 4), (2, 5), (4, 2),
(5, 4), (3, 5), (3, 6), (6, 6)}

1 2 3

4 5 6

One possible drawing of G .

Prof. Dr. Christian Pape Algorithms and Data Structures 108 / 128



Graphs

Definition

Definition

An undirected graph is a graph G = (V ,E ), such that for each edge (u, v) ∈ E
also (v , u) is an edge of G .
(v , u) can be in E but does not have to if (u, v) already is contained in E .

Example

G = (V ,E ) with
V = {1, 2, 3, 4, 5} and
E = {(1, 2), (1, 4), (2, 3), (2, 5),
(3, 5), (4, 5)}

1 2

3

4 5

A possible drawing von G .

Definition

A simple graph only have one edge between two nodes and no edge to itself.
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Graphs

Example

Example

G = ({1, 2, 3, 4, 5, 6, 7}, {(1, 3), (3, 4), (5, 1), (5, 3), (5, 4), (4, 6), (7, 6), (5, 5)}
Draw G as a directed and then as an undirected graph.

a

b c

de

Example

Give the set V and E for the graph G = (V ,E )
on the left.

Prof. Dr. Christian Pape Algorithms and Data Structures 110 / 128



Graphs

Applications
Route Planing

Find the shortest path, for instance Google Maps

Algorithm: Single or all shortest path from a given node (your current
position) to a destination.
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Graphs

Networks

Ethernet: only one path between to network nodes is allowed.

Algorithm: Dynamically finding a minimal spanning tree for a network.

A spanning tree is a sub graph connecting all nodes but without cycles.

Minimal: fastest connection, highest capacity, ...
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Graphs

Representation

Undirected graph

1 2

3

4 5

If nodes are given as natural
numbers:
use node number as index
in an array.

Adjacency matrix

1 2 3 4 5

1 x x
2 x x x
3 x x
4 x x
5 x x x

Adjacency list

1

2

3

4

5

2 4

1 3 5

5 2

1 5

4 3 2
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Graphs

Representation

Digraph

1 2 3

4 5 6

If nodes are not natural numbers:
Create a map from nodes to natural
numbers. For instance with hash
tables or any other dictionary data
structure.

1 2 3 4 5 6

1 x x
2 x
3 x x
4 x
5 x
6 x

1

2

3

4

5

2 4

5

5 6

2

4

6 6
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Graphs

Representation

Example

Give an adjacency matrix and an adjacency list for the following graph.

1 2

3

4 5

9 8

6 7

Represent undirected edges with both directions.
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Graphs

Spanning Tree

1 2

3

4 5

9 8

6 7

A spanning tree is a sub tree G ′ = (V ,E ′) of a given (undirected, simple)
graph G = (V ,E ) with E ′ ⊆ E , such that G ′ does not contain a cycle.

We only consider connected graphs: there always is a path from each node
to another.

1 2

3

4 5

9 8

6 7
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Graphs

Weighted Graphs

We add a weight to each edge. it could represent the distance of an edge on
a map or the capacity of a network line.

(edge) weighted graph (undirected and connected in our case)

The weight can be either given as a function w(e) for each edge or as an
attribute e.weight.

In drawings of a graph the weight is written near the edge.
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Graphs Minimal Spanning Tree
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Graphs Minimal Spanning Tree
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Graphs Minimal Spanning Tree

Minimal Spanning Tree

Definition

Minimal spanning tree (MST): A spanning tree of a graph G where the sum of
all edge weights is minimal over all spanning trees of G .

a

b c d

e

h g f

i

4

8 7

9

14

10

42

67

11

8

1 2

a

b c d

e

h g f

i

4

8 7

9

14

10

42

67

11

8

1 2
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Graphs Minimal Spanning Tree

Algorithm

Definition

Minimal spanning tree (MST): A spanning tree of a graph G where the sum of
all edge weights is minimal over all spanning trees of G .

a

b c d

e

h g f

i

4

8 7

9

14

10

42

67

11

8

1 2

a

b c d

e

h g f

i

4

8 7

9

14

10

42

67

11

8

1 2
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Graphs Minimal Spanning Tree

Cut

Definition

Let G = (E ,V )be an undirected graph and S ⊆ V .
The partitioning (S ,V − S) is called cut trough G .
Each edge (u, v) ∈ E with u ∈ S and v ∈ V − S is called crossing edge.

The crossing edges connect the sub graphs formed by S and V − S .

a

b c d

e

h g f

i

4

8 7

9

14

10

42

67

11

8

1 2 S
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Graphs Minimal Spanning Tree

Prim’s Algorithm
Idea

In the previous example the crossing edge with minimal weight 7 is part of a
MST.

Starts from an initial cut consisting of a single node (arbitrary).

Search a crossing edge e with minimal weight among all crossing edges.

Extend the cut by e.

Repeat until the result is a spanning tree.

Theorem: Result is minimum spanning tree (without proof).
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Graphs Minimal Spanning Tree

Prim’s Algorithm

Arbitrary start node r .

Listing 27: Sketch of Prim’s Algorithm

1 A = prims−a l g o r i t h m (V, E , r )
2 A ← ∅
3 VA ← {r}
4 wh i l e A i s not a s p a n n i n g t r e e
5 f i n d a c r o s s i n g edge ( u , v ) w i t h min imal w e i g h t i n (VA,V − VA)
6 A ← A ∪ { ( u , v ) }
7 VA ← VA ∪ { v }

Example

Start with a
Give A und VA after each iteration of the while
loop.

b c

da

f e

1

3

2

4

3

1
5

3

2
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Graphs Minimal Spanning Tree

Prim’s Algorithm
Implementation

Searching the minimal crossing edge by enumerating every edge is too time
consuming. We use a priority queue for all nodes in VA.

Each node is added to the queue with initial
weight ∞. The starting nodes weight is 0.

The weight of a node is the weight of its
currently smallest crossing edge.

The currently smallest crossing edge for each
node n is stored in an attribute n.crossing .

If the minimal node n is removed from the
queue, then n.crossing contains a minimal
crossing edge.

All edges (n, v) are enumerated for this
node. If it has a smaller weight than
v .crossing , then the attributes of v are
updated.

b

d

e

1

3

2

1

3

1
5

3

2

a

c

f

0

1

2
3

00

00

A

b

d

e

1

3

2

1

3

1
5

3

2

a

c

f

0

1

2
1

A

2

3
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Graphs Minimal Spanning Tree

Prim’s Algorithm

Listing 28: Prim’s Algorithm

1 A = prims−a l g o r i t h m (E , V, r )
2 A ← ∅
3 q ← empty p r i o r i t y queue
4 f o r each u ∈ V
5 u . w e i g h t ←∞
6 u . c r o s s i n g ← n u l l
7 p r i o r i t y−enqueue ( q , u )
8 p r i o r i t y−d e c r e a s e−v a l u e ( q , r , 0)
9 wh i l e not empty ( q )

10 u ← p r i o r i t y−dequeue ( q )
11 i f u . c r o s s i n g 6= n u l l
12 A ← A ∪ { u . c r o s s i n g }
13 f o r each ( u , v ) ∈ E
14 i f ( u , v ) . w e i g h t < v . w e i g h t
15 d e c r e a s e ( q , v , ( u , v ) . w e i g h t )
16 v . c r o s s i n g ← ( u , v )

b

d

e

1

3

2

1

3

1
5

3

2

a

c

f

0

1

2
3

00

00

A

b

d

e

1

3

2

1

3

1
5

3

2

a

c

f

0

1

2
1

A

2

3

Prof. Dr. Christian Pape Algorithms and Data Structures 125 / 128



Graphs Minimal Spanning Tree

Prim’s Algorithm
Worst Case Analysis

Creating the priority queue with a binary heap bottom up is done in linear
Time Θ(|V |)
Each node is only removed once: Θ(|V | log2 |V |) with a binary heap.

Each edge is only enumerated once (for each direction): Θ(|E |) with an
adjacency list implementation.

With a binary heap reducing the weight cost logarithmic for each edge is the
dominating operation: Θ(|E + |E | log2 |E |) = Θ(|V |2 log2 |V |)
With a Fibonacci heap: Θ(|E |+ |V | log |V |) since reducing the weight can be
done in constant time (amortized). This is an optimal implementation.

In practice: Binary heaps are used since implementations of Fibonacci heaps
have a significant larger constant factor.
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Graphs Minimal Spanning Tree

Prim’s Algorithm
Example

b c

da

f e

1

3

2

4

3

1
5

3

2

Example

Start with node a.
You do not have to build a binary heap. Either

draw the graph with node weights, mark the current smallest crossing edge
and mark nodes removed from the queue

or use a table for the current node weight and another one for the smallest
crossing edge. Mark nodes that are removed from the queue.
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